System Evaluation
We open sourced our evaluation toolkit at eval-vislam.
Acciracy(APE, RPE, ARE, RRE, Completeness)
Usage:
./accuracy <groundtruth> <input> <fix scale>
Arguments:
<groundtruth> Path to sequence folder, e.g. ~/VISLAM-Dataset/A0.
<input> SLAM camera trajectory file in TUM format.
<fix scale> Set to 1 for VISLAM, set to 0 for VSLAM.
Initialization Scale Error and Time
Usage:
./initialization <groundtruth> <input> <has inertial>
Arguments:
<groundtruth> Path to sequence folder, e.g. ~/VISLAM-Dataset/A0.
<input> SLAM camera trajectory file in TUM format.
<has inertial> Set to 1 for VISLAM, set to 0 for VSLAM.
Robustness
Usage:
./robustness <groundtruth> <input> <fix scale>
Arguments:
<groundtruth> Path to sequence folder, e.g. ~/VISLAM-Dataset/A0.
<input> SLAM camera trajectory file in TUM format.
<fix scale> Set to 1 for VISLAM, set to 0 for VSLAM.
Relocalization Time
Usage:
./relocalization <groundtruth> <input> <has inertial>
Arguments:
<groundtruth> Path to sequence folder, e.g. ~/VISLAM-Dataset/A0.
<input> SLAM camera trajectory file in TUM format.
<has inertial> Set to 1 for VISLAM, set to 0 for VSLAM.
Representative Monocular SLAM Results
Due to the randomness in these SLAM systems, they may not always produce the same results. So, we run each benchmark 10 times to take the average of the results. Some algorithms, when running against some sequences, may produce inconsistent results. Therefore, we remove these failure cases (i.e., APEs were unusually large) by inspection, and then compute the average of the remaining ones.
The number of failures for each sequence
Seq | PTAM | ORB-SLAM2 | LSD-SLAM | DSO | MSCKF | OKVIS | VINS-Mono | VINS-Mono-NoLoop | SenseSLAM v1.0 |
---|---|---|---|---|---|---|---|---|---|
A0 | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
A1 | 3 | 5 | 1 | 6 | 3 | 0 | 0 | 0 | 0 |
A2 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
A3 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
A4 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 |
A5 | 1 | 0 | 0 | 2 | 0 | 6 | 0 | 0 | 0 |
A6 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
A7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
VSLAM Tracking accuracy
Sequence | PTAM | ORB-SLAM2 | LSD-SLAM | DSO | ||||
---|---|---|---|---|---|---|---|---|
A0 | 75.442 | 6.696 | 96.777 | 5.965 | 105.963 | 11.761 | 231.860 | 10.456 |
A1 | 113.406 | 16.344 | 95.379 | 10.285 | 221.643 | 23.833 | 431.929 | 12.555 |
A2 | 67.099 | 6.833 | 69.486 | 5.706 | 310.963 | 8.156 | 216.893 | 5.337 |
A3 | 10.913 | 4.627 | 15.310 | 7.386 | 199.445 | 10.872 | 188.989 | 4.294 |
A4 | 21.007 | 4.773 | 10.061 | 2.995 | 155.692 | 10.756 | 115.477 | 4.595 |
A5 | 40.403 | 8.926 | 29.653 | 11.717 | 249.644 | 12.302 | 323.482 | 7.978 |
A6 | 19.483 | 3.051 | 12.145 | 6.741 | 49.805 | 3.018 | 14.864 | 2.561 |
A7 | 13.503 | 2.462 | 5.832 | 1.557 | 38.673 | 2.662 | 27.142 | 2.213 |
Sequence | PTAM | ORB-SLAM2 | LSD-SLAM | DSO | ||||
---|---|---|---|---|---|---|---|---|
A0 | 12.051 | 0.257 | 5.119 | 0.342 | 20.589 | 0.371 | 9.983 | 0.401 |
A1 | 53.954 | 0.291 | 8.534 | 0.242 | 51.122 | 0.288 | 39.007 | 0.524 |
A2 | 8.789 | 0.301 | 5.550 | 0.255 | 30.282 | 0.296 | 10.584 | 0.253 |
A3 | 6.225 | 0.293 | 1.431 | 0.264 | 31.370 | 0.475 | 20.580 | 0.241 |
A4 | 6.295 | 0.255 | 1.015 | 0.157 | 9.592 | 0.498 | 5.217 | 0.180 |
A5 | 14.030 | 0.452 | 1.963 | 0.546 | 36.789 | 0.810 | 40.939 | 0.324 |
A6 | 2.348 | 0.217 | 0.892 | 0.169 | 5.012 | 0.207 | 1.435 | 0.189 |
A7 | 1.218 | 0.153 | 0.569 | 0.115 | 3.052 | 0.147 | 2.239 | 0.135 |
Sequence | PTAM | ORB-SLAM2 | LSD-SLAM | DSO |
---|---|---|---|---|
A0 | 79.386 | 65.175 | 49.513 | 14.476 |
A1 | 60.893 | 68.303 | 11.511 | 0.869 |
A2 | 85.348 | 79.263 | 21.804 | 22.878 |
A3 | 71.635 | 98.497 | 27.112 | 43.493 |
A4 | 95.418 | 100.000 | 64.283 | 80.371 |
A5 | 87.399 | 97.785 | 25.033 | 2.059 |
A6 | 97.399 | 99.786 | 94.883 | 100.000 |
A7 | 100.000 | 100.000 | 98.663 | 100.000 |
VISLAM Tracking accuracy
Sequence | MSCKF | OKVIS | VINS-Mono | VINS-Mono-NoLoop | SenseSLAM v1.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
A0 | 156.018 | 7.436 | 71.677 | 7.064 | 63.395 | 3.510 | 75.388 | 2.497 | 58.995 | 2.525 |
A1 | 294.091 | 14.580 | 87.73 | 4.283 | 80.687 | 3.472 | 161.444 | 1.676 | 55.097 | 2.876 |
A2 | 102.657 | 10.151 | 68.381 | 5.412 | 74.842 | 8.605 | 56.562 | 1.334 | 36.370 | 1.560 |
A3 | 44.493 | 3.780 | 22.949 | 8.739 | 19.964 | 1.234 | 23.643 | 0.837 | 17.792 | 0.779 |
A4 | 114.845 | 8.338 | 146.89 | 12.46 | 18.691 | 1.091 | 21.532 | 0.953 | 15.558 | 0.930 |
A5 | 82.885 | 8.388 | 77.924 | 7.588 | 42.451 | 2.964 | 49.790 | 1.473 | 34.810 | 1.954 |
A6 | 66.001 | 6.761 | 63.895 | 6.86 | 26.240 | 1.167 | 27.088 | 0.683 | 20.467 | 0.569 |
A7 | 105.492 | 4.576 | 47.465 | 6.352 | 18.226 | 1.465 | 19.973 | 0.746 | 10.777 | 0.831 |
Sequence | MSCKF | OKVIS | VINS-Mono | VINS-Mono-NoLoop | SenseSLAM v1.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
A0 | 6.584 | 0.203 | 3.637 | 0.741 | 3.441 | 0.205 | 3.378 | 0.206 | 3.660 | 0.197 |
A1 | 8.703 | 0.135 | 5.14 | 1.098 | 1.518 | 0.088 | 1.470 | 0.088 | 2.676 | 0.092 |
A2 | 3.324 | 0.195 | 2.493 | 0.869 | 1.775 | 0.201 | 1.766 | 0.201 | 1.674 | 0.181 |
A3 | 6.952 | 0.186 | 2.459 | 0.825 | 2.121 | 0.176 | 2.443 | 0.176 | 1.642 | 0.182 |
A4 | 4.031 | 0.104 | 3.765 | 0.603 | 1.185 | 0.063 | 1.419 | 0.063 | 1.129 | 0.071 |
A5 | 4.928 | 0.167 | 8.843 | 0.360 | 3.000 | 0.040 | 4.521 | 0.040 | 2.041 | 0.089 |
A6 | 2.625 | 0.170 | 2.275 | 0.629 | 1.478 | 0.131 | 1.511 | 0.131 | 1.656 | 0.134 |
A7 | 6.810 | 0.120 | 3.536 | 0.602 | 1.248 | 0.073 | 0.842 | 0.073 | 0.502 | 0.082 |
Sequence | MSCKF | OKVIS | VINS-Mono | VINS-Mono-NoLoop | SenseSLAM v1.0 |
---|---|---|---|---|---|
A0 | 40.186 | 94.255 | 92.546 | 82.945 | 97.317 |
A1 | 1.646 | 98.235 | 86.508 | 19.674 | 95.072 |
A2 | 61.423 | 94.959 | 88.301 | 92.389 | 99.707 |
A3 | 97.814 | 95.972 | 100.000 | 100.000 | 100.000 |
A4 | 76.629 | 97.429 | 100.000 | 100.000 | 100.000 |
A5 | 76.738 | 98.162 | 98.795 | 98.733 | 99.143 |
A6 | 94.128 | 97.805 | 100.000 | 100.000 | 100.000 |
A7 | 68.341 | 96.690 | 100.000 | 100.000 | 100.000 |
Initialization quality
Sequence
PTAM
ORB-SLAM2
LSD-SLAM
DSO
MSCKF
OKVIS
VINS-Mono
VINS-Mono-NoLoop
SenseSLAM v1.0
A0
13.914
2.040
1.615
3.783
1.154
1.067
0.895
0.900
1.840
A1
18.334
6.930
25.578
15.598
5.182
2.892
3.220
3.135
3.674
A2
3.087
1.945
4.980
1.321
3.820
1.155
0.584
0.641
2.154
A3
1.667
0.974
0.810
0.683
3.730
0.690
1.254
1.273
0.764
A4
12.059
2.777
6.404
1.793
2.872
10.997
1.751
1.783
2.967
A5
18.743
4.062
12.934
17.815
4.366
2.119
1.866
1.895
1.183
A6
2.415
2.794
5.655
2.699
6.712
6.696
2.246
2.132
1.484
A7
1.037
0.772
1.624
0.671
9.532
1.413
1.164
1.126
0.835
Average
8.907
2.787
7.450
5.545
4.671
3.379
1.622
1.611
1.863
Max
18.743
6.930
25.578
17.815
9.532
10.997
3.220
3.130
3.674
Tracking robustness
Sequence
PTAM
ORB-SLAM2
LSD-SLAM
DSO
MSCKF
OKVIS
VINS-Mono
VINS-Mono-NoLoop
SenseSLAM v1.0
B0 (Rapid Rotation)
4.73
0.844
1.911
6.991
---
1.071
2.789
2.835
0.306
B1 (Rapid Translation)
4.971
0.231
1.09
2.636
---
0.597
1.211
1.415
0.199
B2 (Rapid Shaking)
5.475
0.294
1.387
---
---
3.917
13.403
21.08
2.013
B3 (Moving People)
7.455
0.6
0.897
6.399
---
0.673
0.785
0.531
0.465
B4 (Covering Camera)
16.033
2.702
0.727
---
---
1.976
0.714
0.826
0.326
Relocalization time
seconds
Sequence
PTAM
ORB-SLAM2
LSD-SLAM
VINS-Mono
SenseSLAM v1.0
B5 (1s black-out)
1.032
0.077
1.082
5.274
0.592
B6 (2s black-out)
0.366
0.465
5.413
3.755
1.567
B7 (3s black-out)
0.651
0.118
1.834
1.282
0.332
Average
0.683
0.220
2.776
3.437
0.830
System Reference
[1] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007: 225–234 DOI:10.1109 / ISMAR.2007.4538852
[2] Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255–1262 DOI:10.1109 / tro.2017.2705103.
[3] Engel J, Schöps T, Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision–ECCV 2014. Cham: Springer International Publishing, 2014: 834−849 DOI:10.1007 / 978-3-319-10605-2_54.
[4] Engel J, Koltun V, Cremers D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611–625 DOI:10.1109 / tpami.2017.2658577.
[5] Mourikis A I, Roumeliotis S I. A multi-state constraint kalman filter for vision-aided inertial navigation. In: IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 3565–3572 DOI:10.1109 / ROBOT.2007.364024.
[6] Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015, 34(3): 314–334 DOI:10.1177 / 0278364914554813.
[7] Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020 DOI:10.1109 / tro.2018.2853729.
Sequence | PTAM | ORB-SLAM2 | LSD-SLAM | DSO | MSCKF | OKVIS | VINS-Mono | VINS-Mono-NoLoop | SenseSLAM v1.0 |
---|---|---|---|---|---|---|---|---|---|
A0 | 13.914 | 2.040 | 1.615 | 3.783 | 1.154 | 1.067 | 0.895 | 0.900 | 1.840 |
A1 | 18.334 | 6.930 | 25.578 | 15.598 | 5.182 | 2.892 | 3.220 | 3.135 | 3.674 |
A2 | 3.087 | 1.945 | 4.980 | 1.321 | 3.820 | 1.155 | 0.584 | 0.641 | 2.154 |
A3 | 1.667 | 0.974 | 0.810 | 0.683 | 3.730 | 0.690 | 1.254 | 1.273 | 0.764 |
A4 | 12.059 | 2.777 | 6.404 | 1.793 | 2.872 | 10.997 | 1.751 | 1.783 | 2.967 |
A5 | 18.743 | 4.062 | 12.934 | 17.815 | 4.366 | 2.119 | 1.866 | 1.895 | 1.183 |
A6 | 2.415 | 2.794 | 5.655 | 2.699 | 6.712 | 6.696 | 2.246 | 2.132 | 1.484 |
A7 | 1.037 | 0.772 | 1.624 | 0.671 | 9.532 | 1.413 | 1.164 | 1.126 | 0.835 |
Average | 8.907 | 2.787 | 7.450 | 5.545 | 4.671 | 3.379 | 1.622 | 1.611 | 1.863 |
Max | 18.743 | 6.930 | 25.578 | 17.815 | 9.532 | 10.997 | 3.220 | 3.130 | 3.674 |
Sequence | PTAM | ORB-SLAM2 | LSD-SLAM | DSO | MSCKF | OKVIS | VINS-Mono | VINS-Mono-NoLoop | SenseSLAM v1.0 |
---|---|---|---|---|---|---|---|---|---|
B0 (Rapid Rotation) | 4.73 | 0.844 | 1.911 | 6.991 | --- | 1.071 | 2.789 | 2.835 | 0.306 |
B1 (Rapid Translation) | 4.971 | 0.231 | 1.09 | 2.636 | --- | 0.597 | 1.211 | 1.415 | 0.199 |
B2 (Rapid Shaking) | 5.475 | 0.294 | 1.387 | --- | --- | 3.917 | 13.403 | 21.08 | 2.013 |
B3 (Moving People) | 7.455 | 0.6 | 0.897 | 6.399 | --- | 0.673 | 0.785 | 0.531 | 0.465 |
B4 (Covering Camera) | 16.033 | 2.702 | 0.727 | --- | --- | 1.976 | 0.714 | 0.826 | 0.326 |
Relocalization time
seconds
Sequence
PTAM
ORB-SLAM2
LSD-SLAM
VINS-Mono
SenseSLAM v1.0
B5 (1s black-out)
1.032
0.077
1.082
5.274
0.592
B6 (2s black-out)
0.366
0.465
5.413
3.755
1.567
B7 (3s black-out)
0.651
0.118
1.834
1.282
0.332
Average
0.683
0.220
2.776
3.437
0.830
System Reference
[1] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007: 225–234 DOI:10.1109 / ISMAR.2007.4538852
[2] Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255–1262 DOI:10.1109 / tro.2017.2705103.
[3] Engel J, Schöps T, Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision–ECCV 2014. Cham: Springer International Publishing, 2014: 834−849 DOI:10.1007 / 978-3-319-10605-2_54.
[4] Engel J, Koltun V, Cremers D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611–625 DOI:10.1109 / tpami.2017.2658577.
[5] Mourikis A I, Roumeliotis S I. A multi-state constraint kalman filter for vision-aided inertial navigation. In: IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 3565–3572 DOI:10.1109 / ROBOT.2007.364024.
[6] Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015, 34(3): 314–334 DOI:10.1177 / 0278364914554813.
[7] Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020 DOI:10.1109 / tro.2018.2853729.
Sequence | PTAM | ORB-SLAM2 | LSD-SLAM | VINS-Mono | SenseSLAM v1.0 |
---|---|---|---|---|---|
B5 (1s black-out) | 1.032 | 0.077 | 1.082 | 5.274 | 0.592 |
B6 (2s black-out) | 0.366 | 0.465 | 5.413 | 3.755 | 1.567 |
B7 (3s black-out) | 0.651 | 0.118 | 1.834 | 1.282 | 0.332 |
Average | 0.683 | 0.220 | 2.776 | 3.437 | 0.830 |
[1] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007: 225–234 DOI:10.1109 / ISMAR.2007.4538852
[2] Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255–1262 DOI:10.1109 / tro.2017.2705103.
[3] Engel J, Schöps T, Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision–ECCV 2014. Cham: Springer International Publishing, 2014: 834−849 DOI:10.1007 / 978-3-319-10605-2_54.
[4] Engel J, Koltun V, Cremers D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611–625 DOI:10.1109 / tpami.2017.2658577.
[5] Mourikis A I, Roumeliotis S I. A multi-state constraint kalman filter for vision-aided inertial navigation. In: IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 3565–3572 DOI:10.1109 / ROBOT.2007.364024.
[6] Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015, 34(3): 314–334 DOI:10.1177 / 0278364914554813.
[7] Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020 DOI:10.1109 / tro.2018.2853729.